Technical- and risk- and regulatory assessment of NPBTs

In CHIC project, NPBTs are applied to improve industrial chicory for better inulin and production of health-related terpenes. As part of CHIC, different NPBT approaches to edit chicory genomes were employed. We will technically evaluate these approaches and assess, whether chicory plants generated by the different techniques pose differences on technical level such as off-target rate, efficiency or fall under different regulations. Currently, CHIC partners generate chicory plants with the different approaches. To ensure comparability between the different approaches, all partners work on same target genes.

These approaches are compared in terms of efficiency, time-frame needed and costs. Furthermore, different approaches may show differences in potential off-target activity. We identified potential off-target sites in the genome of the chicory, which could be edited by the used NPBTs. In a first approach, we tested whether identified potential off-targets sites were cleaved in vitro. First results let assume a high specificity of the tested NPBT, as none of the identified off-target sequence was cleaved so far.

Furthermore, it has been screened the current literature systematically together with the ELSA-Gea project ( and identified thousands of studies wherein NPBTs were successfully applied in a diverse set of more than 40 plant species all over the world. Many studies let assume, that first products are soon touching the commercial market. In many countries, the regulation lags behind this success of NPBTs. Currently, regulation of NPBT differs from country to country. In Member states of the European Union, due to a decision by the European Court of Justice in 2018, plants mutagenized using NPBTs are seen as genetically modified organisms (GMOs). NPBTs are not exempted from the strict European GMO regulation. However, there is an open-ended debate; whether this strict regulation is justified also for NPBTs. Outside Europe other regulations are represented: for several years now, USA, Canada, Argentina, Israel and Chile have a liberal position towards the use of NPBTs. Since CHIC project began in 2018, five more countries clarified the legal position of NPBTs. Among these countries are Brazil, Paraguay, Colombia, Japan and Australia. A number of other countries, e.g. Russia and China, are expected to join soon. Different to Europe, in these countries usually assesses NPBTs derived plants in a case-by-case dependent manner. Mostly they fall out of the scope of regulation, when certain prerequisites were met, e.g. when no foreign DNA was integrated into the edited genome. We are constantly monitoring changes in legislations and follow closely the debate in European Union and its neighbours.

Share this:

Implementation of New Plant Breeding Techniques for dietary inulin

Inulin is a dietary fiber with health-promoting characteristics mainly targeted on gut health. Inulin is extracted from root chicory and used in many food products. The yield and the length of the inulin molecule determines the value and health-beneficial character of this compound. Using NPBT we want to increase both the yield and the length of inulin. The natural production of terpenes in chicory makes the inulin extraction method less efficient and more costly. The other goal of WP2 is to reduce the production of natural chicory terpenes.  

The work done during the first two years of the project CHIC shows that we could generate mutant chicory plants in which the genes encoding  the inulin break-down enzymes are blocked using genome editing techniques thanks to the small alteration the CRISPR tools made in the plant DNA. All mutated plants have been analyzed in great detail on DNA level using various methods.

Figure 1. First NPBT mutated chicory plants with knock-out of inulin degradation genes in greenhouse
Figure 2. First NPBT mutated chicory plants with knock-out of inulin degradation genes in greenhouse
Share this:

Socio-economic and environmental impacts on the whole value chain

In CHIC we evaluate socio-economic and environmental impacts on the whole value chain of the new developed chicory crops. Therefore a socio-economic impact assessment and an environmental assessment of NPBTs and the whole value chain will be performed. In addition to these quantitative assessments, a qualitative research on societal issues hindering or facilitating chicory innovation will be applied. 

The first steps included collecting and screening information on the CHIC value chain and the current chicory cultivation and inulin, therefore a literature and database research was made. Information on current chicory cultivation, inulin production, terpenes and NPBTs was screened and summarized. Followed by the identification of socio-economic and environmental indicators.  

Statistics on international trade of root chicory and inulin from the UN COMTRADE and statistics on land-use, chicory production and yield from the Food and Agricultural Organization of the United Nations (FAO) have been analyzed. Figure 1 below shows the gross production value of chicory roots (including intermediate uses like seeds and feed) in 1,000 international Dollars. The five biggest producers of chicory roots, according to the available data, are Belgium, France, Netherlands, Poland, and South Africa. However, the main producer of chicory roots by far is Belgium.  

To identify environmental and socio-economic impacts of the new CHIC process and the resulting products (Figure 2) an environmental assessment using the methodology of Life Cycle Assessment (LCA) and a socio-economic impact assessment using an input-output modelling will be applied. The whole value chain (e.g. breeding, cultivation, processing) will be included in the assessment.  

The LCA will give information on e.g. greenhouse gas emissions, primary energy demand, water consumption, land use of the new value chain developed in CHIC. Within the socio-economic assessment, the impact of different NPBTs on economic and social indicators will be quantified such as GDP, production volume, growth, competitiveness, and employment as well as the distribution of wealth and income between different sectors and regions within the EU and the global economy. The results will be used to lead the development within the project in a sustainable direction. 

Figure 1 Gross production value of chicory roots (Datasource: FAOSTAT)

Figure 2 Value chain of the CHIC process

Share this:

CHIC project: Breeding Chicory Roots for Health Products.

Don’t miss our new leaflet where we explain the main objective of CHIC project: To breed chicory roots to bring health products to the society!

Download the new leaflet.

Share this: